

ceph

Ernesto Puerta epuertat@ibm.com

- Principal Software Eng. @ IBM
- 25 years' experience (Telefonica, Alcatel-Lucent, Bell Labs, Nokia, Red Hat)
- **10 years** with Ceph (user & developer)

 \wedge

 \Box

 Former Ceph Dashboard Lead (2020-2023)

? ceph

2014, peacefully working at ACME...

.. Evil Corp acquires Small Storage HW Start-up, provider of a core component of ACME's star product.

- Given 6 months to find a replacement for a **"99.999%-uptime <1ms-latency CDN-based video recording & streaming platform"**... Peanut budget (paid solutions). BTW, reuse legacy SGI servers.
- We explored the FOSS storage landscape: **NFS, Lustre, GlusterFS, Ceph**, ...
- Finally chose **Ceph (Hammer-Infernalis)**, and made all possible mistakes:
 - Many small (5-node) clusters with bulky nodes (64 x 6 TB HDDs),
 - EC for read-intensive workloads,
 - Custom librados object-filesystem over HTTP (Cassandra for object-dir grouping) instead of radosgw or cephfs,
 - **Über-finetuning**: sysctl hacks, ethtool, NUMA/IRQ affinity, xfs nobarrier, SR-IOV, undocumented kernel/HBA/NIC driver/ flags, ...
 - Custom Ansible deployer & upgrader,

It was a complete disaster, but I ended up 🧡 Ceph.

(?) ceph

2014, peacefully working at ACME...

.. Evil Corp acquires Small Storage HW Start-up, provider of a core component of ACME's star product.

- Given 6 months to find a replacement for a **"99.999%-uptime <1ms-latency CDN-based video recording & streaming platform"**... Peanut budget (paid solutions). BTW, reuse legacy SGI servers.
- We explored the FOSS storage landscape: **NFS, Lustre, GlusterFS, Ceph**, ...
- Finally chose **Ceph (Hammer-Infernalis)**, and made all possible mistakes:
 - Many small (5-node) clusters with bulky nodes (64 x 6 TB HDDs),
 - EC for read-intensive workloads,
 - Custom librados object-filesystem over HTTP (Cassandra for object-dir grouping) instead of radosgw or cephfs,
 - **Über-finetuning**: sysctl hacks, ethtool, NUMA/IRQ affinity, xfs nobarrier, SR-IOV, undocumented kernel/HBA/NIC driver/ flags, ...
 - Custom Ansible deployer & upgrader,

It was a complete disaster, but I ended up 🧡 Ceph.

A year later, the **project was shut down and everyone was fired**...

? ceph

2014, peacefully working at ACME...

.. Evil Corp acquires Small Storage HW Start-up, provider of a core component of ACME's star product.

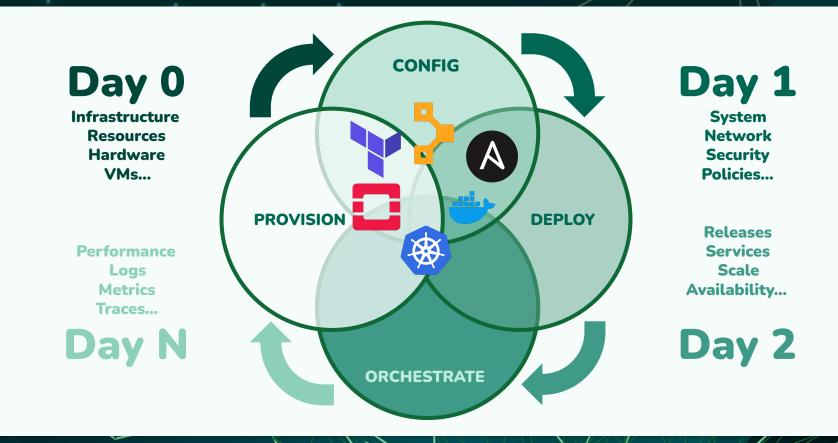
- Given 6 months to find a replacement for a **"99.999%-uptime <1ms-latency CDN-based video recording & streaming platform"**... Peanut budget (paid solutions). BTW, reuse legacy SGI servers.
- We explored the FOSS storage landscape: **NFS, Lustre, GlusterFS, Ceph**, ...
- Finally chose **Ceph (Hammer-Infernalis)**, and made all possible mistakes:
 - Many small (5-node) clusters with bulky nodes (64 x 6 TB HDDs),
 - EC for read-intensive workloads,
 - Custom librados object-filesystem over HTTP (Cassandra for object-dir grouping) instead of radosgw or cephfs,
 - **Über-finetuning**: sysctl hacks, ethtool, NUMA/IRQ affinity, xfs nobarrier, SR-IOV, undocumented kernel/HBA/NIC driver/ flags, ...
 - Custom Ansible deployer & upgrader,

It was a complete disaster, but I ended up 🧡 Ceph.

A year later, the **project was shut down and everyone was fired**... but still 🧡 Ceph.

Agenda

- **Deploying** Ceph
- Cephadm for **Detractors**
 - Intro to Cephadm
 - Container Myths
- Managing XXL Clusters

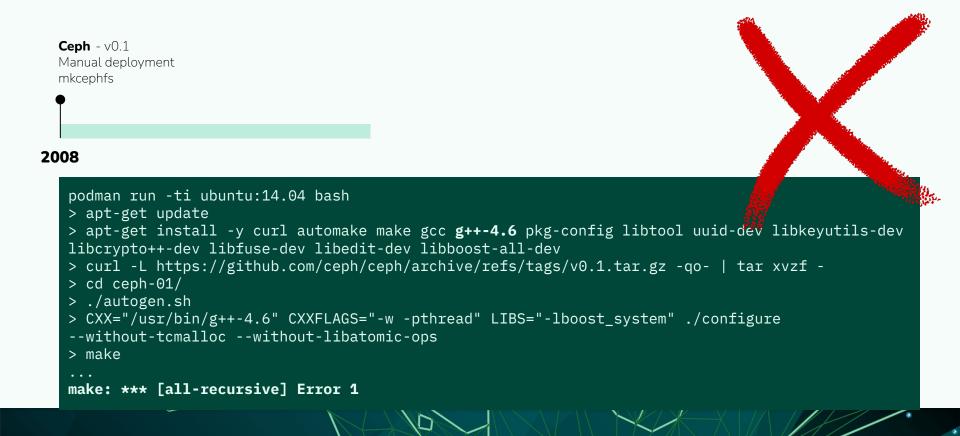


Deploying Ceph...

What I mean when I talk about Deployment

0

In the Beginning... Was the Manual Deployment

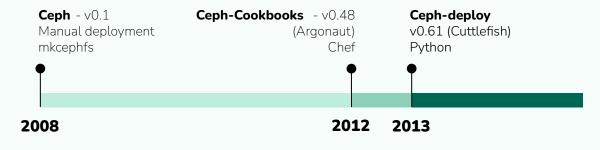


Ceph - v0.1 Manual deployment mkcephfs

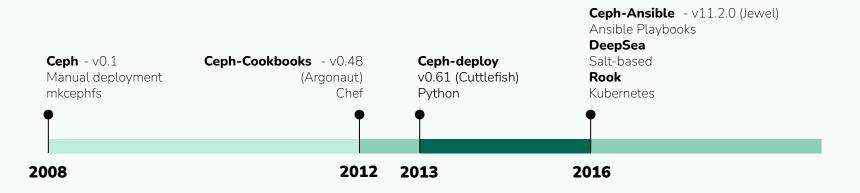
2008

In the Beginning... Was the Manual Deployment

In the Beginning... Was the Manual Deployment

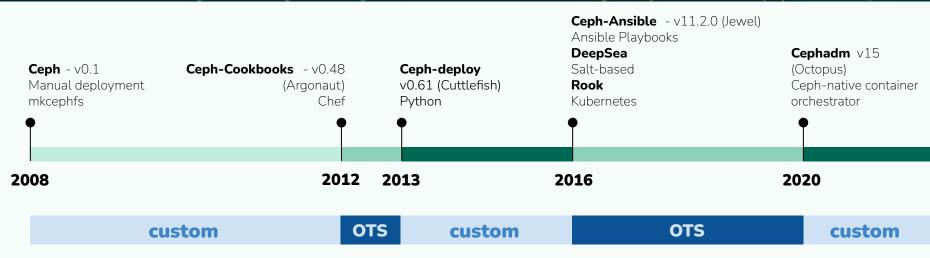


A Chef for Ceph



The Year of the Deployers

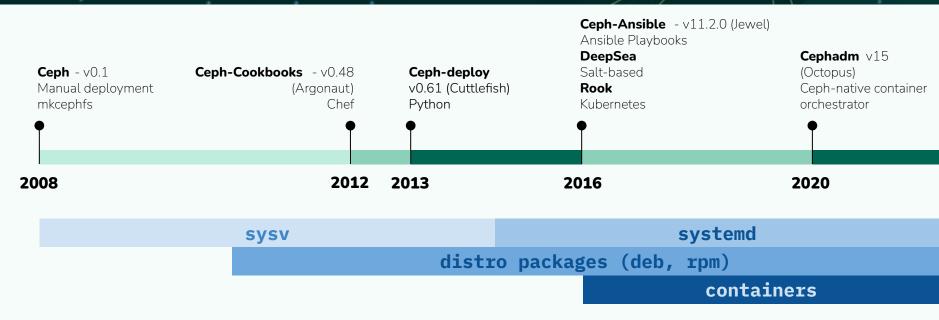
Timeline



Ceph - v0.1 Manual deployment mkcephfs	Ceph-Cookbooks - v0.48 (Argonaut) Chef	Ceph-deploy v0.61 (Cuttlefish) Python	Ceph-Ansible - v11.2.0 (Jewel) Ansible Playbooks DeepSea Salt-based Rook Kubernetes	Cephadm v15 (Octopus) Ceph-native container orchestrator
•	•	•	•	•
2008	2012	2013	2016	2020

.

Not Invented Here: Custom vs. Off-the-Shelf



0

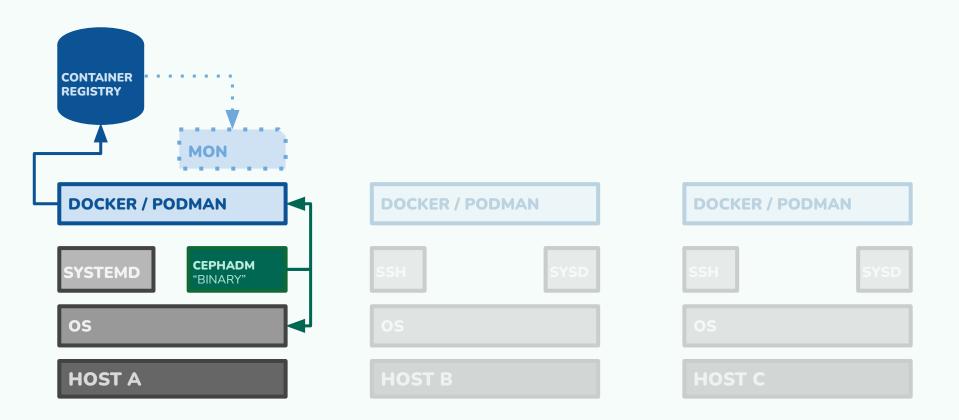
Telluric Forces

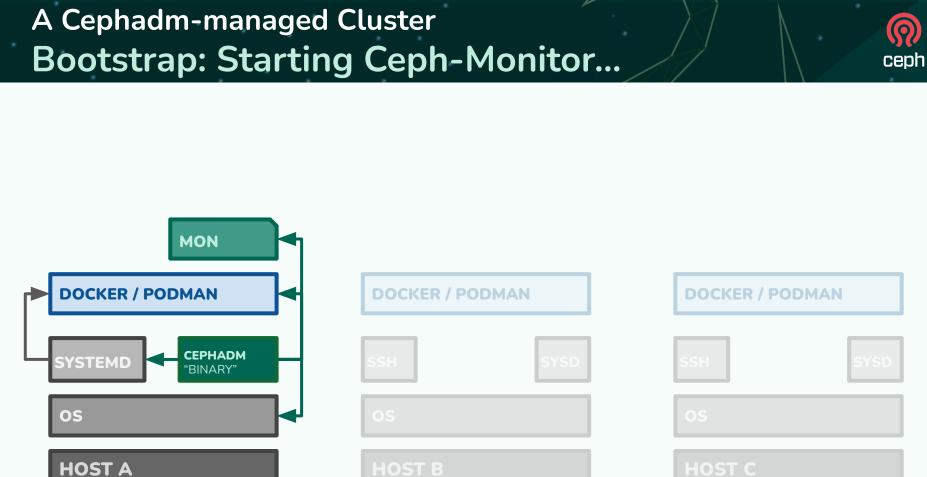
The Cambrian Explosion... of Services

	mkcephfs †	Ceph-cookbook †	ceph-deploy †	Ceph-Ansible	DeepSea †	Rook	Cephadm
Who	Inktank	Inktank	Inktank	Red Hat	SUSE	CNCF-Ceph	Ceph
When	2008-2012	2012-2015	2013-2020	2016-	2016-2021	2016-	2020-
Tech	Bash	Chef / Ruby	Python	Ansible / Python	Salt	Golang / k8s	Python
Approach	Imperative	Imperative	Imperative	Declarative	Hybrid	Declarative	Hybrid
Model	Push (SSH)	Pull	Push (SSH)	Push (SSH)	Pull	Pull	Push (SSH)
License	LGPL-2.1	Apache-2.0	MIT	Apache-2.0	GPL-3.0	Apache-2.0	LGPL-3.0
Github	<u>ceph/ceph/</u>	ceph/ceph-cookbook	ceph/ceph-deploy	<u>ceph/ceph-ansible</u>	SUSE/DeepSea	<u>rook/rook</u>	<u>ceph/ceph</u>

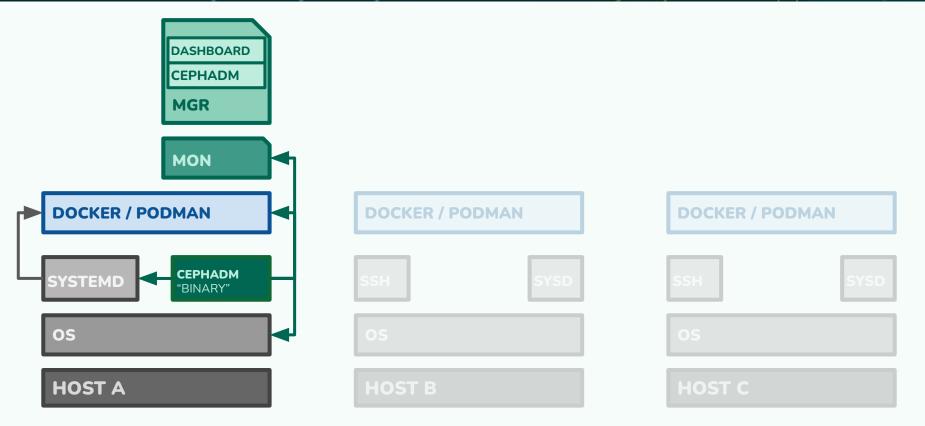
Cephadm for Detractors: Intro to Cephadm

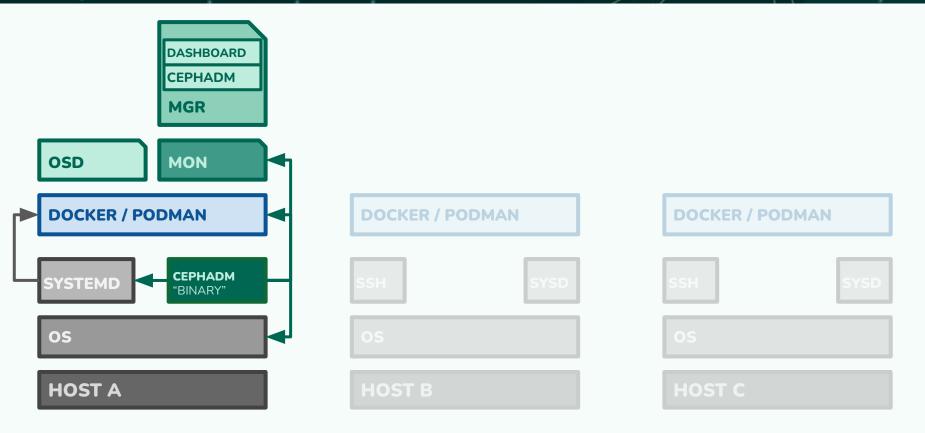

A Cephadm-managed Cluster Day 1

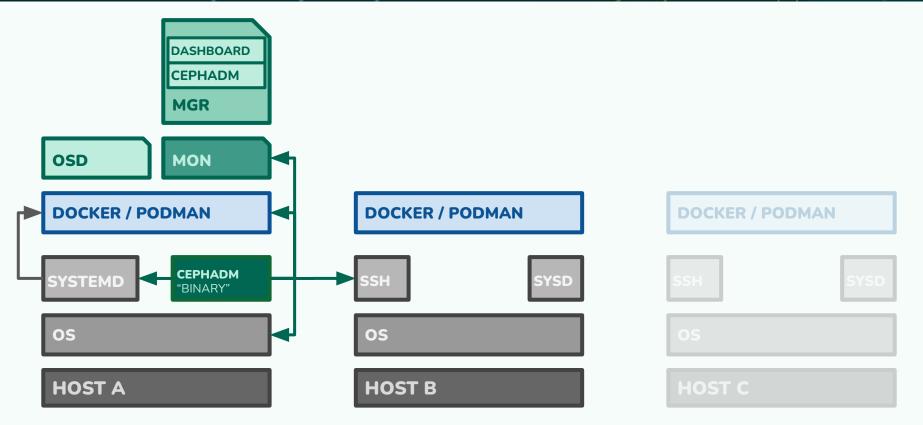

A Cephadm-managed Cluster The "Binary"

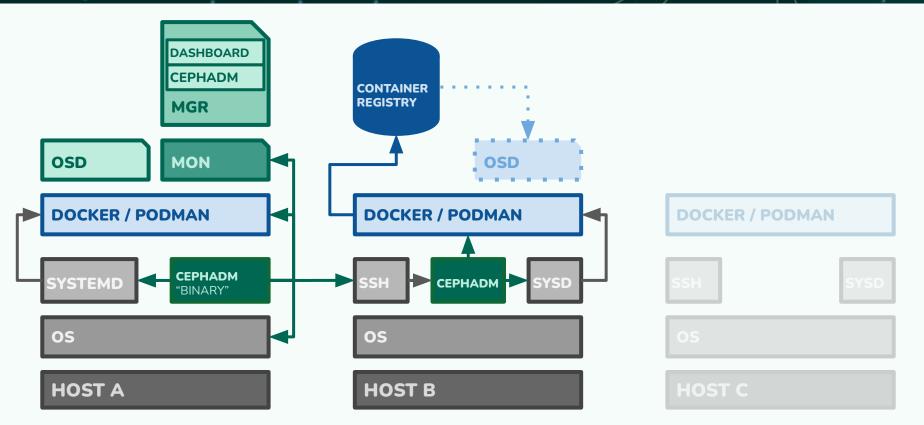


A Cephadm-managed Cluster Bootstrap: Pulling Container Images...

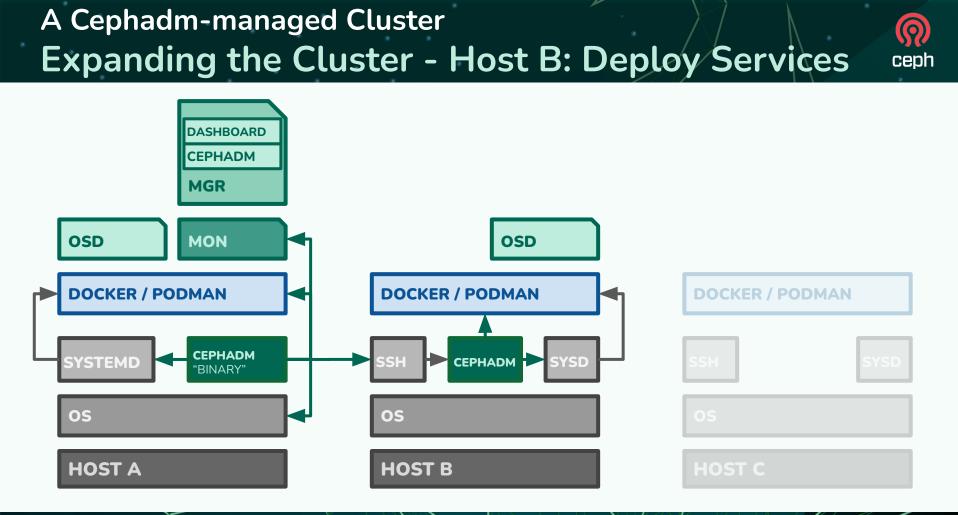



A Cephadm-managed Cluster Bootstrap: Starting Ceph-Manager...

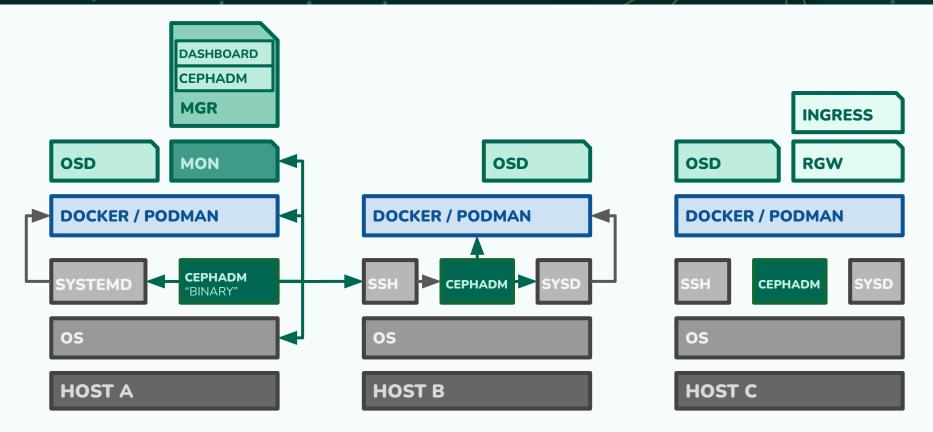

A Cephadm-managed Cluster Bootstrap Finished: The "Seed" Cluster



A Cephadm-managed Cluster Expanding the Cluster: Add Host B



A Cephadm-managed Cluster Expanding the Cluster - Host B: Pull Containers


ceph

•

A Cephadm-managed Cluster A 3-Node Cluster

0

Cephadm for Detractors: Container Myths

4 Container Myths

- **1.** "(Lazy) developers just want to ship their computers." (**WOMM**)
- **2.** "Containers are just Virtual Machines." (**Performance**)
- 3. "Containers are complex to use/manage/troubleshoot."(Usability)
- **4.** "Containers are less secure than distro packages/bare metal/etc." (**Security**)

4 Container Myths "Works on my Machine"

Containers leverage best practices on CI (long-cherished in the Unix/Linux world):

- Immutability
- Reproducibility
- Isolation
- Portability

E.g.: before containers, many FOSS projects used chroots cages/jails to isolate build envs.

Ceph containers are **built from distro packages** (RPMs).

- **Containers are not a kernel thing**, they're **just processes** leveraging 4 userland-available tools in a **unified UX**:
 - namespaces: mnt, uts, ipc, pid, net (lsns, ip-netns, nsenter, unshare, ...)
 - **cgroups**: /sys/fs/cgroup
 - overlayfs: CoW,
 - **bridges**,
- **Containers are not VMs** (not even paravirtualization):
 - **~0% drop for CPU, memory and network.** [1]
 - **Direct IO has 0% drop**. Overlayfs can be worse (~5%).
- **Containers are just Software-Defined Stuff**: aren't you using VLANs, SR-IOV, LVM, SDN, ... or Ceph?

[1] "Bare-Metal vs. Hypervisors and Containers: Performance Evaluation of Virtualization Technologies for Software-Defined Vehicles", Long Wen, Markus Rickert, et al.

8

4 Container Myths Usability

- **Open Container Initiative**: standard across Linux, Windows, Solaris, z/OS, ...
- Choose your **runtime**:

docker, podman

• Service lifecycle management:

pull, run, start, stop, pause, unpause

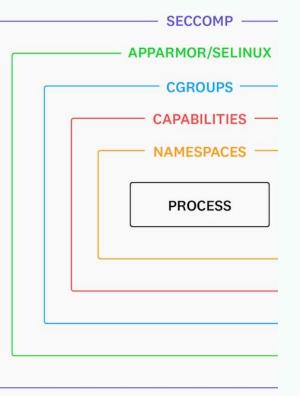
• Debug/troubleshoot:

logs/events,ps,attach/exec,inspect,diff

• Snaphots & manipulation:

commit,cp,load,save,export,

• Improved systemd integration with Podman Quadlets.



4 Container Myths Security

(inceph)

- A rootless container starts with less privileges than any regular user process.
- 5 security layers:
 - **seccomp**: limits what syscalls a process can invoke,
 - **AppArmor/SELinux**: limits how a process interacts with resources via fine-grained Mandatory Access Control (vs. Unix DAC).
 - **Cgroups**: limits how much resources a process can take.
 - **CAPS**: limits what system capabilities a process can access (vs. Unix Root-or-Nothing)
 - **Namespaces**: limits what a process can see.
- **Bare-metal vs. Container**: with containers you can have multiple versions of the same packages running in the same runtime (e.g.: for upgrades/rollbacks).

Picture from https://securitylabs.datadoghg.com/articles/container-security-fundamentals-part-2/

The Shape of Things to Come

• Bootable Containers (**bootc**)

FROM quay.io/centos-bootc/centos-bootc:stream9
RUN dnf install -y podman lvm2 chrony cephadm
...

- Immutable OS (RHEL Image Mode)
 - Zero-drift.
 - Only /etc and /var/lib are mutable (and changes can be tracked in a GitOps approach).
 - Layered upgrades/rollbacks. Multiple control points

Managing An XXL Cluster

Ceph Cluster Sizes

<5 nodes <15 OSDs 5-50 nodes 15-1000 OSDs Most frequent 50-100 nodes 1000-4000 OSDs <0.1%

[1] Ceph Users Survey 2022: https://ceph.io/en/news/blog/2022/ceph-user-survey-results-2022/

The Tipping Point

Unwritten Law of Distributed Systems:

"They scale horizontally, but fail vertically"


This is especially true with **Strong-Consistency Systems**:

Failing nodes are indistinguishable from a network partition.

The CAP Theorem

0

Brief History of Cephadm Scale Testing Nov 2021: Pawsey Supercomputing Centre

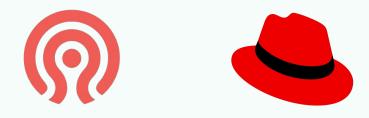
Heavy Ceph users (**object**):

- 11 PB cluster
- 27 PB cluster

Test:

- Quincy
- 180 nodes
- 4,320 OSDs (22 OSD/host)
- 69 PB (raw)
- 100G NICs

Key Findings:


- **mgr**: too many perf-counters
 - ceph-exporter
- Cephadm
 - high CLI lag (10-30s)
 - both polling and (EXPERIMENTAL) agent modes worked.
 - lack of filtering in orch host ls led to poor UX

Brief History of Cephadm Scale Testing Jun 2022: Gibba@Ceph + Scalelab@Red Hat

3 Quincy environments:

- Ceph Gibba:
 - o 40 hosts
 - o 975 OSDs
- Red Hat Scalelab:
 - "Logical Large Scale":
 - 127 hosts
 - 8,134 ODSs (NVMe)
 - "Cephadm upgrade"
 - 13 hosts
 - 832 OSDs

Key Findings:

- **cephadm**: issues running orch commands in multiple hosts.
 - Used Ansible to pre-provision basic host dependencies.

Next Challenge: 10k OSDs

- Max recommended: <4,000 OSDs
- **Beyond 4k OSDs**: careful design required (CPU, RAM, network bandwidth), and intensive mgmt & monitoring.
- **10k OSD challenge**: further code changes will be required (e.g.: Cephadm Agent).

Cephadm Community

How to contribute

- Virtual **meetings**:
 - Ceph Developer Monthly (Wednesday)
 - Ceph Users + Devs Monthly (Thursdays)
- As a **user**:
 - Getting help:
 - <u>ceph-users@lists.ceph.com</u>,
 - Slack <u>#ceph</u> and <u>#ceph-devel</u>
 - Reporting issues or requesting features: tracker.ceph.com
- As a **developer**:
 - o <u>dev@ceph.io</u>
 - o <u>github.com/ceph</u>

Questions?

Reph Thank you!